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J. Phys. A: Math. Gen. 18 (1985) L689-L695. Printed in Great Britain 

LElTER TO THE EDITOR 

Perturbation theory within the 0(4,2) group for a 
hydrogen-like atom in the field of distant charge 

M B Kadomtsevt and S I Vinitsky 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141 980 
Head Post Office PO Box 79, 101 000 Moscow, USSR 

Received 22 May 1985 

Abstract. In the 0 ( 4 , 2 )  group an algebraic scheme of perturbation theory is proposed 
which enables one to find the energy and wavefunctions of bound states of a hydrogen-like 
atom in the field of the point'charge placed at large distance R. It is shown that in each 
order of R-' the correction to the wavefunction is expressed through a finite number of 
Coulomb functions of the discrete spectrum with a modified charge. Simple analytical 
expressions are obtained for the first and second corrections. 

In recent years, many theoretical and experimental papers have been devoted to the 
behaviour of atoms in external electric and magnetic fields (Soloviev 1981, 1982, Braun 
1983, Braun and Soloviev 1984, Clark et a1 1984, Littman et a1 1976, Zimmerman et 
a1 1980). For a theoretical description of these systems one should first construct a 
perturbation theory for weak fields. However, the use of standard Rayleigh- 
Schrodinger perturbation theory leads to the appearance of infinite complex sums. 
Perturbation procedures have been proposed which enabled analytical expressions to 
be derived in some cases (Turbiner 1984). 

Our approach is based on the dynamical 0 ( 4 , 2 )  group of a hydrogen atom (Malkin 
and Man'ko 1965, 1966, Barut and Rasmussen 1973). As is known, the unitary 
irreducible representation of 0 ( 4 , 2 )  algebra is related by the so-called tilting (scaling) 
transformation to the Coulomb functions of the discrete spectrum of the H atom while 
perturbations of the polynomial form are expressed through the generators of 0 ( 4 , 2 )  
algebra. Therefore, the calculation of corrections to eigenfunctions and eigenenergies 
is a pure algebraic procedure. Moreover the corrections to eigenfunctions are expressed 
through a limited number of basis functions of the representation. 

We shall demonstrate the possibilities of Qur approach by examining a hydrogen-like 
atom in the field of a distant point charge. Though this problem has been investigated 
for many years (Krogdahl 1944, Coulson and Gillam 1947, Coulson and Robinson 
1958, Power 1973, Komarov et a1 1976), simple expansions for the wavefunctions were 
not obtained. Such expansions are necessary to formulate boundary conditions in the 
adiabatic representation of the three-body problem (Faifman et af 1976, Ponomarev 
et af 1981): 

Let us recall some properties of the 0 ( 4 , 2 )  group following papers by Bednar 
(1973) and Bechler (1977). The Lie algebra 0 ( 4 , 2 )  is formed by 15 generators 
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(a, p = 1,2 , .  . . , 6 )  

Le, = -Loe 

go, = (1, 1,1,1,  -1, -1). 

[Lcr,, 4371 = igaaL,, 

where 

In the x representation La, are defined by relations (i, j ,  k = 1,2,3) 

Lg = xipi - x~pi = &z]kLk 

L r4=~(x Ip2+2 ip l  - 2 x . p ~ ~  -x i )=  A, 

~ , ~ = 5 ( x , p ~ + 2 i p ,  -2x .pp ,+xI)  

L46 = +( rp2 - r )  

L56 = $( rp2 + r )  

L45 = -i( 1 + ix - p )  

L16 = -rpi 

where Pk = -ia/dxk, Lk and Ak are the momentum, moment and Runge-Lenz vector 
components, r = (xi  + xi + x:)’/~. 

Operators (1) and (2) act in the Hilbert function space with the scalar product 

( f l  g) = d3xf*(x)r-’g(x) (3) 

with respect to which they are self-conjugate. As a basis of the Hilbert space we choose 
eigenfunctions of three commuting operators L56, A,, L,: 

L,,I n, ~ , m )  = n I n, ii2m) 

A31 ni fi2m) = (n2  - ni ii2m) 

L31n,ii2m) = mln,ri,m). 

The basis functions (4) in the parabolic coordinates 

y, = r + x 3  y, = r - x, y, =tan-‘ x2/x, 

d3Y = f ( Y ,  + Y 2 )  dY, dY2 dY3 

have the form ( j  = 1,2) 

(4) 

where Liy’lml(yj) are the Laguerre polynomials (Courant and Hilbert 1953). 
The functions (5) coincide in form with the Coulomb functions of the H atom and 

differ only by a factor (-2E(0))”2 in the argument and the normalisation factor Cnl,,, 
defined by condition (3). This fact simplifies considerably the construction of the 
procedure of perturbation theory on the basis of (4) and (5). However, it is more 
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convenient to use the unnormalised functions 

I n 1 n2 m ) = C ;,In, m I n 1 8 2  m ) ( 6 )  

since the operators L46 and L35 are defined on the functions ( 6 )  in the simplest way 

Now let us apply the formalism of the 0(4 ,2 )  group to the problem of the 
hydrogen-like atom in the charge field. Let the atom with the nuclear charge 2, (atomic 
units are used throughout) be in the field of the charge z b  placed at a distance R, which 
is larger than the size of the atom. Then the Schrodinger equation (axis x3 is directed 
from z b  to Z , )  

( f P Z  - z,/ r - z b /  IR + rl+ zazb/ R - E )  19) = 0 

takes the form 

) (8) 
m 

i p 2  - z , / r  - z b  R-krk-'(-l)k-1Pk-I(X3/I) Z,&/R - E  19) =o.  ( k = l  

We represent the solution (8) as the expansions 

m m 

(9) E = E ( O ) +  C R-kE'k)  9=9::),,*,,,+ 1 R -  k 9 ( k )  
k = l  k = l  

where E"'= - f (Z , /n) '  and 9!,:),,*,,, are the energy and normalised wavefunction of a 
unperturbed problem, respectively. After multiplying (8) by r we have 

($rp2-Za-rE"'-  m 

k = l  

where 

V1)(x3, r )  = E ( ' ) r  - (2, - l )Zbr  

Vk)(x3,  r )  = ~ ( ~ ) r + ~ ~ r ~ ( - l ) ~ - ~ ~ ~ - , ( x ~ / r )  ks-2. 

Further we perform the unitary transformation 

0 = U 9  = e ~ p ( i f 3 L ~ ~ ) q  

tanh f3 = ( 1  + 2E('))/( 1 - 2E")) 

and use the relations u-'Xku = ( - ~ E ' " ) ' / ~ x ~ ,  r = L56- L46, xj = L35 - L ~ ~ ,  $rp2 = 
t(  L4 + L56). Then equation (10)  becomes 

Using for @ the representation (9) and collecting in (12) terms at equal degrees of R, 
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,fk), 

With relation ( 7 )  and the polynomial form of V‘k’  we expand the right-hand sides 
f k ’  and corrections @ ‘ k l  over the states 1st) = In, + sn,+ tm)CnIn2, which are normalised 
only in the case s = t = 0 (see (6)), i.e. 100) = 

The terms @ ‘ k l (  a )  are due to the Coulomb degeneration in the layer n = n ,  + n, + lm/ + 1 
and form the zero-order function, which is independent of the magnitude of z b ,  

k 

p = l  

@ i O , k )  = - i o )  
n l n z m  @ n l n 2 m +  C R - P @ ( P ’ ( a )  

for the perturbation operator up to (k+2) th  order 
k+2 

p = 1  
V ( k + 2 ) =  c R-’V‘’’ 

Taking into account the orthogonality of the functions 1st) with weight r-’  according 
to (3 )  and L( n ) l s t )  = (s + t ) l s t )  we rewrite the system of equations (13 )  

(s+ t )b j : ) ) s t )  =f5:’lst) - k s S, t s k. (15)  

Equation (15 )  at k =  1 ,  s = t = O  becomes 

flb’loo)= ( n / Z ~ ) 2 [ E ‘ ” - ( Z a  - 1 ) z b l ( L 5 6 -  L46)1°0) 

= (fl/z,)*[E(” - (2, - 1)Zb]L56100) 

= (n/Z,)*[E‘”-(Z, -l)Z,]nlOO)=O. 

Hence we immediately obtain 

6::’ = 0. E‘” = (Z, - 1)Z, v‘” , 0 

The calculation of corrections of a higher order also does not encounter any great 
difficulties. Indeed, taking into account (17) one can observe that A:) depends linearly 
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on E ( p ) ,  1 s p s k and 
correction to energy from the equation linear in E““ 

bj:+”, 1 s 1 s k -3 .  This allows one to obtain the kth order 

f’d”,’ =f&)( E ( p ) ,  1 s p S k, 

b$) = ( s + r)-’ j$)( E ( p ) ,  1 s p s k, ai!s,, b:‘,), 1 s I s k - 2). 

fisk_:’) =f’,“_:”( E ( p ) ,  1 S p  s k, bi:), 1 S I G k - 1) = 0. 

bS.;”’, 1 S Is k - 3)  = 0. (18) 

Then we obtained 

(19) 

Since fS!<’) is independent of we find a:!;” from the equation 

(20) 

Thus, in the ( k +  1)th order we first find a$!;’) and then and b$”’. The 
calculation of the corrections by the linear equation (18)-(20) is reduced in each order 
to a pure algebraic procedure. Using the subroutine (18)-(20) up to the order R-4, 
we obtain the wavefunctions up to order R-2 

1 - 1  - - t ( n / z a ) ( n , +  1)(n2+lml) a‘” - 

a(lz2, = t ( n / ~ ~ ) ~ ( n , + l ) ( n , + I m l ) ( l + n , - n , )  

ay_’, = $ ( n / ~ , ) ~ ( n ,  + l ) ( n , + 2 ) ( n 2 + I m / ) ( n , + l m l  - 1) 

bit) = -$( ~I /Z, )~Z, , (  n, + 1 ) (  n, + 2) (21) 

by20 = {( n/ Z,)’zb( n, + 1 
b(2) - 1 

I)( n, + I m I - 1 ) 

IO - 4(n/Za)3Zb[2(2nl + 2 +  Imi) -3(nl  - n2)](nl+ 1) 

b‘2 :o=- f (n /Z , )32b[2 (2n ,+(ml )  - 3 ( n l -  nz) ] ( f l ,+ lml ) .  

The remaining seven coefficients are obtained up to the sign by interchanging n, by n, 

bb:’= -bS.2,)(nl-n,). (22)  (2)  - ( 2 )  a?/,  = -a\!!,( n, - n2) ,  a-ss- as-r(n , -nJ ,  

Applying the tilting operation (Zt/’/n) U-’ (equation (1 1)) to the calculated func- 
tion @ = 6!,:i2,,, + R-’(D(’)+ R-2@(2’ in accordance with Bednar (1973) and Bechler 
(1977) we have 

9 = ( Z t ” / n )  exp(-iOL45)@ = Y!,:)n2m+ R - ’  1 a ~ ! ! s 9 ~ \ s n 2 - s m  
1 

S = - l  

2 2 2  

+ R - 2  1 u ~ ? s 9 ~ ~ \ s n 2 - 5 m +  R-, s = - 2  r = - ,  1 bj:)YL:)+sn2+,m (23) 
s = - 2  

where 

m>O 
m S O  

z 3 / 2  m 
-- - n 2  a c n l n * m ~ n l + s m ( ~ Y i ) ~ “ 2 + ~ m ( ~ Y * ) - { ~ ~ 1 )  9 

in the notation of ( 5 ) .  Note that Y!,:!sn2+rm coincide up to the normalisation factor 
with the parabolic functions of the Coulomb problem with the new charge Z, = Zan,/ n 
and with the new principal quantum number n* = n + s + t (see equation (9)). 
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The orthogonality condition in (24) 

= n-’ (nln2m/l , , -L, , In l+sn2+ tm)= 6,,6,, 

is fulfilled only at Z ,  = Z,, i.e. at s + t = 0. 
Taking into account that E”’ = $( n / Z , ) Z b (  n ,  - n 2 )  and 

It should be noted that the last term in (25) corresponds to the Stark correction to the 
hydrogen-like wavefunction 

which is linear with respect to the electric field Z b / R 2 .  The remaining terms 
the zero-order wavefunction for the quadrupole and octupole interactions. 

Thus, we have shown that an explicit use of the dynamical 0 ( 4 , 2 )  group 

define 

of the 
Coulomb problem allows one to obtain the simple expansions (21), (22) and (25) in 
powers of R-’ for a hydrogen-like atom in the point charge field. In t‘his case only the 
zero-order corrections (14) contain the Coulomb functions of the unperturbed atom 
with fixed principal quantum number n. In contrast with the ordinary procedure of 
the Rayleigh-Schrodinger perturbation theory the remaining corrections are expressed 
through a finite number of modified Coulomb functions corresponding to a changed 
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charge 2, of the nucleus of the atom. The method suggested can be used in the theory 
of the hydrogen-like atom for any perturbation of the polynomial form. 

The authors are grateful to Drs A Bechler, M P Faifman, A V  Matveenko, G S Pogosyan, 
E A Soloviev and Professors Yu N Demkov, I V Komarov and L I Ponomarev for 
useful discussions. 
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